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Abstract

An approximation method is developed to calculate the gravitational field of a matter
source Ty, moving on a curved background metric that is an exact solution of the field
equations and deviates only weakly from flat space-time. The field /1, of the source Ty,
is supposed to be much smaller than the curved part of the background, so that in the
series expansion of Ay, each order can be expanded in powers of the background.

1. Introduction

The approximation methods hitherto developed to solve Einstein’s field
equations are based on a series expansion of small deviations from flat space-
time; see perhaps Einstein et al. (1928), Bertotti and Plebanski (1960), Das
et al. (1961), Havas and Goldberg (1962) and other references given by Havas
and Goldberg. That means that in the lowest order of approximation the metric
has the form g, = 1,. In many cases, however, it is suitable to consider the
motion of a matter source Ty, on a curved background metric that is unchanged
by the motion of the source T,,. According to this it shall be supposed that in
the total metric field

(in)
8uv = &uv T My (L.

the part A, of the source 7}, is much smaller than the curved part of the
(in)
background metric g, 1.,
(in)
iguuwnuv‘>ihw/& (123)
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. (in) .
Furthermore it is assumed that g,,,, is an exact solution of the field equations
and deviates only weakly from flat space-time, i.e.,

{in}
(&up —~ Ny | €1 (1.2b)

Finally the assumption is made that the orders of magnitude expressed in
equations (1.2) are conserved at partial derivatives. On the basis of these assump-
tions in the present paper an approximation method is developed for expanding
the field &, into series.

For the case of a spherically symmetric background Peters (1966) had
developed a method to find an approximate solution. However, this method
linearizes in the perturbing field A, and beyond it considers in the background
only terms linear in the gravitational potential ® of the central mass. The
method proposed in this paper takes into consideration the full curved part

(in) (in) L. (im)
Yuv =&uy — Nuv Of any background with {v,, | € 1 and allows one to calculate

all orders of the perturbing field A,

2. Field Equations

Using the metric in the form

Suv =77uv+(17r’3v + My = Ny Yuw (2.12)
ghv = +(i<?‘)‘” + kMY =t 4 gt (2.1b)

with
(ar +7) (™ £ 00) Sgoghv = 5, @10

Einstein’s field equations for the total field take the form
DY,:,W FYiuw — 7%&}&[1} - '}’av!oz}g - npv(Dy - ,}/0.’{3{82&)
(in)
= o(Tyw T Tw) —20, (2.22)
(raising and lowering of indices always by n*” or n,,, vertical lines signify

. .. {n) .
partial derivative, O = n*73,3,). Here fiv is the source of the background field
and v = v,,mn"". @, represents the nonlinear part of the field equations, ie.,

Ous = 0% (3, e g — 9T o) + 8™ (Lo n e [ o
~Toyauls, 10) ~38008 07 7(3, T, gp — 35T pr)
—} 88 g™ (Ta,nc T, or — Toyno T, k)
3179840 + 7m ™) (3 Ley go — 35T, po) (2.2b)
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The form (2.1a), (2.1b) of the metric and the resulting field equations (2.2) are
invariant only under coordinate transformations that transform 7, into 7.
That means that the metric in the representation (2.1a), (2.1b) and the field
equations in the form of equations (2.2) restrict the four-dimensional coordinate
transformations to Lorentz transformations. The background field had been
supposed to be an exact solution of the field equations, ie.,

(in) (i) (in) (in) @in) (in)
D7uv T Yuw — 'Ya,ulalv - ')’auialu - nuv(D'Y - Vaﬁiﬁ;a)
(in) (in)
= *2K07;xu - 2®u.u(g7uc) (2.3)

Then it follows from equations (2.2) and (2.3) that

Ohyw + Ry — 1%ty — B viaip — M (0 A haﬁlﬁia)

=2k Ty — 204, (2.4a)
with
(in)
ﬁuv = ®p,v - ®uv(g7u<) (2.4b)

To simplify the field equations (2.4) one can choose a suitable gauge. How-
ever, such a gauge has to be chosen in a form that is invariant under Lorentz
transformations. In the following the gauge

akuv: 0, ‘lfpu :h;w “%nuvh (2.5)
is assumed. This gauge is invariant under Lorentz transformations. It is also
suitable since the left-hand side of the field equations (2 4a) can be written
in the form

Oy~ 300 ¥u® — 3u8a¥s™ + Nudadpy™
so that the gauge (2.5) leads to
Oy = —2%0T — 20y, (2.6)

The field equations (2.6) in connection with the gauge (2.5) are equivalent to
the field equations (2.4).

3. Conservation Laws

The divergence of the left-hand side L, of the field equations (2.2a)
vanishes, i.e., 3,L," = 0. From this it follows that

(tot)
ay {koT," + ®[J,V =0 (3.1a)
with
(oty  (im)
Ty =Ty + Ty (3.1b)
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The conservation law (3.1) is equivalent to

(tot)
3 (Ko T 7= 1"} =0 (3.22)
with
(tot) (tot)
T’ “g”"(~g)"27L . g=detg, (3.2b)

and Einstein’s energy-momentum complex

1) =3(-9)? ([T (6™ — $£"8°7) — Tho (g5
—’Zg}wgyo)]gi\‘rm — auy UT(FQUFQT p?\ Fo'r)} (3 '2C)
Analogously the conservation law

(in)v V(in)
3, (ko7 + 0, (80 )} = 0 (3.3)
which follows from equation (2.3) is equivalent to
(in) , LG
&Ko Ty ~ 1, (&n)} =0 (3.4a)
with

(in) (m) (in) (in)
7 =M= T (3.4b)

From equations (3.1)-(3.4) one can conclude that the conservation law

3, ko T, + 9,71 =0 (3.5)

which follows from the field equations (2.4a) just as from the equivalent
equations (2.5) and (2.6) is equivalent to

(tot) (in)
dy {ko( yuy -, V) - tuv} 0 (3.6a)
with
» (in)
=1 =t (o) (3.6b)

Because the field equations (2.6) and the conservation law (3.5) are equivalent
to (2.6) and the gauge (2.5) [if one supposes some asymptotic behavior of the
Y, see the theorem of uniqueness of the wave equation as had been proved
by Fock (1960)] one can conclude that the field equations (2.6) and the
conservation law (3.6) are equivalent to equations (2.5) and (2.6) (and,
respectively, to the field equations (2.4)).

4. Caleulation of g™ and (—g)V?

In view of the conservation law (3.6) that will be taken later as the equation
of motion one has to calculate the contravariant field g*” and (—g)"/? in terms
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of the background field ., and of the field

oo

hy, = h 4.1
uv MZ= 1 IL%I ( )
From equation (2.1¢) one obtains the relation
(in) Gin)  (in) (in)
oM = My Mgy (42)

(in)
by which one can calculate successively the contravariant field ¢* in terms of

p
the covariant field 'Iyr;)y [because of (1.2b)]. One obtains

(in) w  (in)
o= 2 at (4.32)
N =1 (N)
with
(in&v (inL )
=—7
(0
(in) (in) (in) (in)
oM = (VYN VLY, N2 (4.3b)

)
Furthermore it follows from g,wg”?‘ = 8;‘ and equations (2.1) that
(in)  (in)

R A N T N Lo o (4.4)
Equation (4.4) shows that k*” is a mixture of all orders A, and any powers of
(in) %)
the background v, So it is useful to define quantities k" which are composed
of products of the orders 1,,,,, - - -, 1,,,, so that )
) (Mp)
i1
2M=M
2

multiplied by N powers of the background(g;),,. Substituting (4.1), (4.3), and

o0

k¥ = 3 2 (4.5)
M=1,N=0{M,N)

into equation (4.4) one obtains

> k= 3 oper o 3 RN
M=1,N=0M,N) M=1(M) M=1,N=1(M) (N)
(il’l) > 50 o
D ky - 2 > kY (4.6)

M=1,N=0(M,N) M=1 L=1,N=0M)(L,N)
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and from this the recurrence relations

K =_phv S g g (4.72)
w,0) (M) M+ M,=M (Ml)(Mz,O)

(in} (in)

B =y Mk e — } L N 4.7b)
M, 1) %) M, 0) M +M,=M MM, 1)
(m) (m)
h[.l.}\ }\ ,Y k v
(M,N) o W)y o, N—l)

- D e N>2 @.7¢)
M, + M, =M M) (M, ,N)

Starting with

B = gy (4.8)
Lo M

. (in)
one can calculate from these relations all k“;’ in terms of the background 712,,

’

and the A,,,,. From the relations (4.7) one obtains the following structure of

(M)
the k#%:
(M, N)
(in}
kuv_.(L)klwh 'Y +(Q)kﬁ”’h , Y N 49a
om  orw ) " ot (5N ey ) @29
D = _pmv (4.9v)

01,0 (D)

Here the frontal index (L) means that the quantity depends on the Mth order

A linearly, and the index (@) that the quantity depends on the orders 4, .

(M) (1)
Ay in form of products of order M; (7”,, stands for V powers of the back-

(M-1} (i

ground ’;;u,, At fixed N the structure of the PVk* is the same for all M. To

’ ey

’

calculate the determinant g the relation

4

£= 2 &1a82683y84s Capys (4.10)
8,76 =1

is used. Here €,gy5 is the four-dimensional Levi-Civita symbol. From

(in) o
uv = Tup + Yuv + 2 h;w
M= 1(M)
then it follows that
g= 2. g 4.11)

M=0,N=0(M,N)
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with
(in) (in) (m) (in) (in)
g=-1, g=-, 2=3 (™ -7, ..., g=detyy,
(0,0) (0,1} ©,2) (0,4)
g=0for N > 4, Z g= detgu,, (4.12a)
(0,N) =0(0,N)
and
M, )
g=—h, g=—h+i h,h* — K|, g=hy v h'y (4.12b)
1,0y (32,00 (2) (1) OO (1 1)(1)
etc.

The expansion of (—g)?according to

(—g)1’2=1ﬁ%(§ g+t > g )

N=1(0,N) M=1,N=0 (M,N)
4 o 2
-3l 2 g+ g
N=1{0,N) M=1,N=0{M.N)
—1é Z
N=1(0,N}y M=1,N=0{M,N)

4 o 3
i( > gt g ) (4.13)

12
M=0,N=0(M,N)

vields
(in)
9" =1, (9 =1y
(0,0) (0,1}
") (in)(in), . (4.142)

((—()gz))l/z 1(77 = TuvY

() =3 h, (-g) 2 =3 A i@ A~ B k)
( 1 ‘@ (13 (1
1,0) ( ) ,0) ) (1) (4.14b)
(i) (i)
((—g)\”2 %(%M hpw“”)
1,1}

ete.
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Finally one obtains

S g (4.15)

H=(-0)" " = M=0,N=0 (M,N)

with
Y (in) (in)
=n"" GHY = MYy L
(0,0) wn 7 3y
() (nyGn) GG - Gin) (in) (4.162)
(Og;;v lT?W( ’)/ 7po7po) _7 ’y“v+~y ™ )
MY = _pHv 4 I gy
(1,0) (1) n
=3(h +4h* — $h,chPY* —3h BPY 6b
2 z =2 (4.16D)
(2 0) @ (1) W (1)(1)
+ hﬂ?\h v kv
(1) (1) 2)
(in) (m)a
7(7]17 hpo"yp )’)’)uu
(1 ‘} @ W
i 4.16¢)
(in) (in)  (in @in (
—i(h‘r‘”’"?h“v)+7”}‘h>\“+7ﬂ?\hv
etc o € (1

5. General Solution of the Field Equations
From equations (2.4b), (2.2b), and (4.9) one obtains the following structure

of the nonlinear part 9,,:

b (in)
ﬁ,u,v = Z @ Y, V(h)c}u . -( K;w 'YK?\N)
M=1,N=0 MN)(I) M-1
¢ (5.1)
& (in) o
+ z gw(h;du Ve )

M=1,N=1 (M Ny (1)
For the following calculations it is very important that the structure of

- (in) ar
Z (L)&pv(hx?\a VX ) & -2)
N=1 (MNYO)
is the same for all M, i.e.,
& (in) s (in)
> D0t = 2 Ol 1o (53

N=1 (N (M) N=1 (1,N) ()

for all M.
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Understanding the series expansion (4.1) as an expansion in powers of ko and
using (5.1) one obtains from the field equations (2.6) for the Mth order
W=

ngm, = —2Kg Z Tyt > (Q)ﬁuv(kx}u con

(M) N=Q (M-1,N) N=0 M,N) (1)
(i ) & (m)
Rns Yien ) + Z (L)lsuv(hxx, BN ) (5 -4)
(M-1) N=1 (M,N) M)

Here the matter tensor of order M, ie.,

2 T
N=0 (M,N)
(in)
depends, on the one hand, on the background field v, and the orders 7z, . .
(1
#,, explicitly. On the other hand, it depends on the background and the orders
453]
Ry, . - . By, implicitly because of the equation of motion which has to be
1 (M)
satisfied by the matter source 7, (sce below).
If one knows the orders Ay, . . ., Ay, and the matter tensor in the (M-1)th
w M-
order equation (5.4) appears as a linear mhomogeneous differential equation
for the Mth order A, = Yy, — 2n“,, x,b,(;\n . Therefore the general solution is

.

@& @n €9
the sum of the general solution of the homogeneous equation
< (in)
Dy = Z (L)ﬁuv(huw 'Yqu) (5.9

()  N=1 ,N) M)

and a special solution of the inhomogeneous equation. The structure of the
homogeneous equation is the same for all M. Its solutions are such without a
source T, and must to be set zero for physical reasons. A special solution of
equation (5.4) is given by

(ret)
Vv = F [ 2k Z Ty + Z (Q)&MV(}ZK?w"-a

(M) N= 0(M-1 Ny N=0 N (1)
(in) w (ret) oo (ret) (1n)
Pids Yiex )] 2> A2 (L)ﬁ;w( o (I 121)s Yk ﬂ (5.62)
(M-1) =2 N=1 (M,N) \(M)
(ret) (ret) (ret)

Here | [ - - - | means the retarded integral #=01"" of the quantity in the

square brackets and

{ret) {ret)

{M;uv(fl 1) \b}w(fl—-l) fﬁpywx?&(jl—l)n (5*6b}



108 LESSNER

The solution (5.6) supposes the existence of the several retarded integrals and
the convergence of the series. Then, in fact, it follows that

Ddzw=—2f< S T+ 3 Do, ()
(M} N=0{M-1,N}y N=0 (M, N)

o oo (ret) (in)
Z z (L)ﬂ ( K)?\(jb)')’i()\]v)

I=1N=1 (MN)

Ko Z T/.LV z (Q)ﬁuv()
N=0(M-1,N) N=0 (M,N)

= (ret) (in)
+ 3 By, (Z (S 1)s YHP\N>
N=1 (M.N) 1{M)
N ot
hid\
(M)

The solution (5.6) shows the structure

o (N)

Yup = )3 u/uv (5.7)

(M) N=0 (M)

wy (injpr(0)
of the ¥, That means that Y, is of order v i, It holds

(M) an o
0)  (ret)
w =1 =20 T +D0(ha, - - b)) (5.84)
€73 (M-1,0) W, 0) (1) -1
(1) (ret) (in)
U =1 2% T +P%ula, . honv)]
%) M-, (M, D) (M—l)
(5.8b)
@y 9w
+ f2 [ @pv(h;cka V)]
(M, (M)
(2) (ret) © (1n
d’pv =4 [-2x0 Typ + 9, U(hK)u .- hn)u'}’x?\)]
(M) (M-1,2) W, 2) (1) (M 1)
(ret) (0) (in) (1) (ret) (in)
+ 52 [ D8 (B 1) + D9, p(kxa(fl) va)] (580
1,2) D M, D

(ret) ret) (in)
+ ~f3[(L)19 ( 7\('}2)’ 7}(7\)]
(M, 1) (M)
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and in general

W) (rev) (in)
wuv = fl [‘2"0 T,uv + (Q)ﬁ;w(h;d\a LRI hk}\» 'YK)\N)]
) M-1,N) (M. (1) -1
(ret) (0) (in) . (1) (ret) (in)
+ £ 199, ou 1) + D0 Bra(F),70N)
(M,N) (M) (M, N-1)(M)
N-1) (ret) (in)
o By o (F1), Yo (5.8d)
(M, 1) (M)
(ret) (1) (ret) (in) ,,_ (NV-1) (vet) (in)
+ 7310, (o (£ 1l ™)+ + 9, (o F2), va))
(M.N-1) 3D : (1, 1) (1)
ety oy, WD (ret) (in)
+tIN+1 [ 3uv(hx>\(fN)a 'YK)\)]
(M, 1) (M)

6. Successive Procedure to Solve the Field Equations and the
Equation of Motion

The equation of motion is used in form of the conservation law (3.6). In

(in)
space-time regions with Ty, = O this conservation law takes the form
3, (ko@™ M Tp —£,/1=0 (6.1)

Because ?ﬂ” is nonlinear in the field just as J,; one has

- z ~ (in) e " (in)
tr= 2 DR B o houra™ S B (ol
M=1N=0 (M,N)(1) (M-1) M=1LN=1 (M,N) (M)
(6.2)

Using the series expansion (4.15) and (4.16) of ¥*” the equation of motion
(6.1) in the Mth order then takes the form

0

3y {KO Z (pr + Z {ﬁ% T;ﬂ\
N=0(M-1,N) N, +N, =N (0,N)) (M-1,N,)
N, < N-1

+ 5 > gV Tun) (6.3)
M1+M2 =M-1 N; +N2 =N (MpNz) (MzsN’z)
M, < M2
. (Q)g‘f(..‘)_Z(L);“v(...)}zoa M>=1
N=0 (M,N) N=1 (M,N)
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Knowing the orders A, . . ., Ay and the matter tensor up to the (M-2)th
(1) (M-1)
order one can calculate the Mth order A, and the (M-1)th order of the matter
M)

tensor from the solution (5.8) of the field equations and the equation of motion
(6.3).
To do this, start from equation (6.3) for N =0

Wike(TS+ 3 g™ T
(M-1,0) M, +M, =M-1 (M,,O)(Mz,o)
M, < M2

@ (B, . )} =0 6.4
Mo (M)

(0
By solving equation (6.4) one obtains 7,,;, and by that the field #,, from
(M-1,0) o)
equation (5.8a). For N =1 equation (6.3) takes the form

av{KO(T,uV + gv)\ Ty + Z Z g Tu?\)
(1, 1) (0, 1) (M-1,0) M, +M, =M-1 N,+N, =1 (M, N}) (My, N,)
M, < M2
(6.5)

(0)
@B, - - s P, 7;0\) « )fpv(hm, 7,0\)} 0
oM, 1) (1) (M—l) WM, M)

(1)
By solving equation (6.5) one obtains 7}, and by that the field h,w from
©0) (1) (M-1,D
equation (5.8b). Using 4,,,, and Ay, one gets 7, from equatlon (6 SforN=2,
o0 ) (M-1,2)
etc. The essential point of this successive procedure is the smallness of the
curved background field so that it is possible to expand each order A, in powers

of the background. (1)
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