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Abstract 

An approximation method is developed to calculate the gravitational field of a matter 
source Tt~ v moving on a curved background metric that is an exact solution of the field 
equations and deviates only weakly from flat space-time. The field h~v of the source T~v 
is supposed to be much smaller than the curved part of the background, so that in the 
series expansion of h~v each order can be expanded in powers of the background. 

1. Introduction 

The approximation methods hitherto developed to solve Einstein's field 
equations are based on a series expansion of small deviations from flat space- 
time; see perhaps Einstein et al. (1928), Bertotti and Plebanski (1960), Das 
et al. (1961), Havas and Goldberg (1962) and other references given by Havas 
and Goldberg. That means that in the lowest order of approximation the metric 
has the formg~v = ~v-  In many cases, however, it is suitable to consider the 
motion of a matter source Tuv on a curved background metric that is unchanged 
by the motion of the source Tuv. According to this it shall be supposed that in 
the total metric field 

(in) 
g,v =g,v +h,v  (1.1) 

the part huv of the source Tuv is much smaller than the curved part of the 
(in) 

background metric guy, i.e., 

(in) 
lguv - 7?uv I~" lh.u I (1.2a) 
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(in) 
Furthermore it is assumed that g**~ is an exact solution of the field equations 
and deviates only weakly from flat space-time, i.e., 

(in) 
{g~v --r/uv t '~  1 (1.2b) 

Finally the assumption is made that the orders of  magnitude expressed in 
equations (1.2) are conserved at partial derivatives. On the basis of  these assump- 
tions in the present paper an approximation method is developed for expanding 
the field huv into series. 

For the case of a spherically symmetric background Peters (1966) had 
developed a method to find an approximate solution. However, this method 
linearizes in the perturbing field huv and beyond it considers in the background 
only terms linear in the gravitational potential • of the central mass. The 
method proposed in this paper takes into consideration the full curved part 
(in) (in) (in) 
3,uv =g~v - r?uv of  any background with [ 3,u~' I ~ 1 and allows one to calculate 
all orders of  the perturbing field huv. 

2. FieM Equations 

with 

Using the metric in the form 

(in) 
g ~  = ~ / ~  + %v + h ~  = ~/~  + 3,~v (2.1a) 

(in) 
g~V = ~uv + our + kUV = ~uv + our (2.1b) 

(in  +(i3  ) (in 0n  
(~ux + 3,~x) =guxg~ = 8 ~ (2.1c) 

Einstein's field equations for the total field take the form 

(in) 
=-2~0(Tu~ + Tu~ ) . -2®uv (2.2a) 

(raising and lowering of indices always by r? u~ or ~uv, vertical lines signify 
(in) ~uv o partial derivative, E3 = ,~ u3~). Here Tu~ is the source o f  the background field 

and 3' = %vr~ u~. ®uv represents the nonlinear part of  the field equations, i.e., 

®uv = o~t~(OvFc~c~u - 3~rc~uv) + ga~gX~(F~xKr~,uv 

-F~, xu F~, Kv) -½ g, vg ~ o° r(OrF~ t~ - 8t3F% or) 

_½ ggvg~g hKg or (Fa, 7~K F~, t~r - F~, ~o F~3, ~r) 

--½r~Oa(guvo aft + 3,uvrl c~) ( 3aP~,f3 o -- 3~P~,oo ) (2.2b) 
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The form (2.1a), (2.1b) of  the metric and the resulting field equations (2.2) are 
invariant only under coordinate transformations that transform r~u~ into r~uv. 
That means that the metric in the representation (2.1a), (2.1b) and the field 
equations in the form of equations (2.2) restrict the four-dimensional coordinate 
transformations to Lorentz transformations. The background field had been 
supposed to be an exact solution of  the field equations, i.e., 

(in) (in) (in) (in) (in) (in) 

DTu~ + 71,,lv - 7~ul~lv - 7~v i<u  - r/uv(D7 - 7~i~i~) 

(in) (in) 
- 2KoTuv- 2®uv(gxK) (2.3) 

Then it follows from equations (2.2) and (2.3) that 

D h u v  + hlulu - h~uialv  - h~v la tu  - r~uv([2]h - hC~l~lc~) 

with 

= -2Ko l;~v - 20u~ (2.4a) 

(in) 
0uu = ®uv - ®uv(gxK) (2.4b) 

To simplify the field equations (2.4) one can choose a suitable gauge, ttow- 
ever, such a gauge has to be chosen in a form that  is invariant under Lorentz 
transformations. In the following the gauge 

3 v ~  u v = O, +uv = huu - ~ rluvh (2.5) 

is assumed. This gauge is invariant under Lorentz transformations. It is also 
suitable since the left-hand side of  the field equations (2.4a) can be written 
in the form 

- - 3  a 

so that the gauge (2.5) leads to 

[] ~ v  = - 2 K o r ,  uv - 2 0 , ,  (2.6) 

The field equations (2.6) in connection with the gauge (2.5) are equivalent to 
the field equations (2.4). 

3. Conserva t ion  L a w s  

The divergence of  the left-hand side Luv of the field equations (2.2a) 
vanishes, i.e., 3vLu v = 0. From this it follows that 

(tot) 
Ov { K o T .  v + ®uv} = 0 

with 
(tot) (in) 

r . .  = + 

(3.1a) 

(3.1b) 
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The conservation law (3.1) is equivalent to 

(tot) 
a~ ( %  3-~ ,~  tu ~} = 0 

with 

(3.2a) 

with 

( in)  ( i n ) .  ( in)  ( in)  
~-  v = gVh(_g) l/2Tu x (3.4b) 

From equations (3.1)-(3.4) one can conclude that the conservation law 

~. {KoTg v + o .  ~) = o (3.5) 

which follows from the field equations (2.4a) just as from the equivalent 
equations (2.5) and (2.6) is equivalent to 

(tot) (in) 
O v ( K o ( j u v  _ y--uv) _ ~v} = 0 (3.6a) 

with 

(in) 
Fuv = tu v - tuV(gx~) (3.6b) 

Because the field equations (2.6) and the conservation law (3.5) are equivalent 
to (2.6) and the gauge (2.5) [if one supposes some asymptotic behavior of  the 
ffuv, see the theorem of  uniqueness of the wave equation as had been proved 
by Fock (1960)] one can conclude that the field equations (2.6) and the 
conservation law (3.6) are equivalent to equations (2.5) and (2.6) (and, 
respectively, to the field equations (2.4)). 

4. Calculation o f  guv and ( - g )  1/2 

In view of the conservation law (3.6) that will be taken later as the equation 
of  motion one has to calculate the contravariant field gU~ and (_g)1/2 in terms 

(tot) . (tot) 
j -  ~ v -~,  - '~vat t--sJ '~'O/2T," ~A, g = detg~v (3.2b) 

and Einstein's energy-momentum complex 

t ~ = ~ ( _ g ) l n  { [r;o(gXpj~ _ ½gXTg~O)_ r~o(g~g~ 

_½gXrgVa)]ghrlu_ v al" h a.  g (r~arp~ - r ~ r ~ ) )  (3.2c) 

Analogously the conservation law 

(in) (in) 
0v {t~oT, v + ®uV(gxK)) = 0 (3.3) 

which follows from equation (2.3) is equivalent to 

~ r (in_) v ( in)  
v ~.Ko J u - t~V(gxK)} = 0 (3.4a) 
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(in) 

of the background field "&v and of the field 

huv = ~ huv (4.1) 
M=I (m) 

From equation (2.1c) one obtains the relation 

(in) (in) (in) (in) 
our = _,,/uv _ yux oxv (4.2) 

(in) 
by which one can calculate successively the contravariant field ouv in terms of 

(in) 
the covariant field %v [because of (1.2b)]. One obtains 

(in) (in) 
o "v =  ~ a uv (4.3a) 

N= I (N) 

with 

(in) (in) 
O # v  = _ ,),pv 

(1) 

(in) (in) (in) (in) 
o "v = (- l~7"x~'x~x~ " ' "") ' K N - I v ,  N ~  2 (4.3b) 

(N) 

Furthermore it follows f romg.vg  vx = 6u x and equations (2.1) that 

(in) (~)XkxV - 
k uv = - h  uv _ hxUovx hUXkxV (4.4) 

Equation (4.4) shows that k uv is a mixture of all orders hu, and any powers of 
(in) (M) 

the background %v. So it is useful to define quantities k "v which are composed 
of products of the orders huv , • •., huv so that (M, N) 

(M~) (Mn) 

t'l 

Z M v = M  
P : l  

(in) 
multiplied by N powers of the background 7~v- Substituting (4.1), (4.3), and 

k ~v = ~ kUV (4.5) 
M = 1,N = 0 (M,N)  

into equation (4.4) one obtains 

(in) 
k u v = - -  ~ h ~ v -  ~ h~Xox v 

M = I , N  =O(M,N)  M = I ( M )  M = I , N = I ( M )  (N) 

(in). 
-T  ~A ~ kxv-- ~ ~ h"X kx v 

M =I,N:O(M,N) M =1 L =I,N:O(M)(L,N) 
(4.6) 
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and from this the recurrence relations 

k uv= - h  uv - ~. h "x kx  v (4.7a) 
(M, 0) (M) M 1 +M 2 =M (MI) (M~, 0) 

(in) (in) 
k uv = 7VXhxU _ 3,"Xkx v - ~ h ~XkxV (4.7b) 

(M, 1) (~I) (]VI, O) MI + M2 =M (]VIt)(M a , 1) 

(in) (in) 
k uv = - h  UXox~ - ,),ux k~( 

(M,N) (M) (N) (M,N-1) 

- ~ hUXkx v, N>~ 2 (4.7c) 
M, +M~ =M (M,) (M: ,N) 

Starting with 

k uv = h ~v (4.8) 
( l ,  o) (:) 

(in) 
one can calculate from these relations all k uv in terms of the background %v 

(M,N) 

and the huv. From the relations (4.7) one obtains the following structure of 
(M) 

the k UV : 
(M,N) 

kU v = (L)kUV(h~,(~N)" " + (Q.)kUV(hK?, ' . .  ", nKx, 7 K x -  (in) N'~) (4.9a) 
(M,N) (M,N) (M) (M,N) (1) (M-l) 

(L)k = - h  uv (4.9b) 
(M, 0) (11//) 

Here the frontal index (L) means that the quantity depends on the Mth order 
hKx linearly, and the index (Q) that the quantity depends on the orders hKa . . . . .  
(M) ( in ) . ,  (1) 

hKx in form of products of order M; 7uv v stands for N powers of  the back- 
(M-t) (in) 
ground %v- At fixed N the structure of the (L)kUV is the same for all M. To 

(M,~9 
calculate the determinant g the relation 

4 
g = ~ glag2~g37g48 ea3v5 (4.10) 

a,3,7, 6 - 1 

is used. Here ea/~6 is the four-dimensional Levi-Civita symbol. From 

(in) 
guy =vuv +'y~v + ~ huv 

M= I (M) 

then it follows that 

g =  ~ g (4.11) 
M =O,N=O(M,N) 



with 

g = - l ,  
(o, o ) 

S O L U T I O N  O F  E I N S T E I N ' S  F IELD E Q U A T I O N S  

(in) (in) (in) (in) (in) 
g = --7, g = ½ (')'l, ZV7 pv  --  ")'2) . . . . .  g = detTuv 

(0, 1) (0,  2) ( 0 , 4 )  

and 

4 (in) 
g = 0 f o r N  > 4 ,  ~ g =detguv 

(O,N) N = O(O,N) 

g = - h ,  g = - h  + ~[ huvh uv \ (in) . - h2~, g = h~v7 uv - h(~/n) 
(1,o) 0)(2,0) (2) k(1) (I) (1)]O,1)O) (1) 

etc. 
The expansion of (-g)l/2according to 

(__g) 1/2= 1 - ½ (  ~ g 
\ N  = I (0 ,N)  M = I , N = 0  (M,N) 

M = t , N = O  (M,N)] 

4 ~ ) 3  

- ~  E g +  ~ g 
\N=lfO,N) M= 1,N=0 (m,~0 

105 

(4.12a) 

(4.12b) 

(4.13) 

yields 

: ~ (_g),l~ 
M : 0 ,  N = 0  (M,N) 

(in) 
(_g)l/2 = 1, (_g)1/2 = ½7 
(o, o) (o, 1) 

(in) (in)(in)gv~ 
(-g)'~ = ¼ ( ½ 7  2 - 7 . ~ 7  ) 
(0,2) 

= 1 i. + l i l  7~2 (_g)  1/2 = ½ h, ( - g )  1/2 _ huvhUV ) 
0,o) (1) (2,0) ~(~) 4tT(~t) (~) (1) 

1 1 • (in) , ( i n ) v w  
(_g)W2 =.~(~ n 7  - nuu7 ) 
(1,1) (1) (t) 

(4.14a) 

(4.14b) 

etc. 
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Finally one obtains 

~ # v  = (_g)l /2g~V = : (ff~v 
M = 0 , N = 0  (M,N) 

(4.15) 

with 
(in) (in) 

~ v  = ~Tuv, ~ v  = _ 7 ~ v  + ½~tv 7 
(0,0) (0,1) 

(in) ( in)On) (in)On) (in) (in) 
~isv =4 k 2 t  -- 7po7 p ° ) - l ' 7  "7 #v + TuXyx  u 

(o,2) 

~u" = - h  ~ + ½ ~ h  
( i ,o)  (a) 0 )  

(4.16a) 

Nuv = ~(h + th  2 - ~hpahPa)r~ "" - ~h h ~" 
(2,0) (2) (1) (1) (1) (1)(1) 

+ hUXhxV-(h;  v 
O) O) 

(in) (in) 
~ " ~ =  ½(½h~, - h . o - lP° )V .  ~ 

(1,1) 0 )  0 )  

(in) (in) (in). (in) 
- ½(hTU v + 7h ~ )  + ,y~*hx ~ + 7UXh~ x 

(I) (I) (I) (1) 

(4.16b) 

(4.16c) 

etc. 

5. General Solution o f  the Field Equations 

From equations (2.4b), (2.2b), and (4.9) one obtains the following structure 
of  the nonlinear part Our: 

,o (in,) N~ 

M= 1,N=0 (M,N) (1) (M-I) 

(L).a ,r~. (in) N'~ 
e'#vknKk, 7KX J 

M= I ,N=  1 (M,N)(M) 

For the following calculations it is very important that the structure of  

~ (L).,~ ,'1~ (in.) N-, 
c~tv\nKk, YKk ) 

N = i (M,~') (M) 
is the same for all M, i.e., 

(L).~ [1. (in) N~, ~ ( L ) a  t h  (in) Nx 
upvkn~k ,  YKk ) = E ~lav<'~Kk, "YKX ) 

N = I  (fl//~W)(ll//) N = I  (1,N)(Ji~') 

for all M. 

(s .1)  

(5.2) 

(5.3) 
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Understanding the series expansion (4.1) as an expansion in powers of ~0 and 
using (5.1) one obtains from the field equations (2.6) for the Mth order 
(M~> 1) 

[~uu  =-2t% ~ Tuv + ~, (O)O~,(hKx .... .  
(2Y/)  N=0(M-I,N) N=O (pd,A r) (I) 

h~x¢~xN)+ ~ (L).a r,. 02) N, (5.4) tlpu~.rtKk, 7g~. ] 
(M-l) N :  1 (M,N) (M) 

Here the matter tensor of order M, i.e., 

T•I• 
N=0 (M,N) 

depends, on the one hand, on the background field and the orders h,~ . . . . .  
(~) 

hu~ explicitly. On the other hand, it depends on the background and the orders 
(M) 
huv . . . .  huv implicitly because of the equation of motion which has to be 
(t) (M) 
satisfied by the matter source T~. (see below). 

If one knows the orders h~v . . . . .  buy and the matter tensor in the (M-1)th 
(l) (M-l) 

order equation (5.4) appears as a linear inhomogeneous differential equation 
for the Mth order huv = ~uv - ½~uv ~K~ ~x. Therefore the general solution is 

(M) (M) (M) 
the sum of the general solution of the homogeneous equation 

OqJ~v ~ (L),~ r~ (in.) N, (5.5) 
= v#V'..'~12V, "[lay ) 

(M) N= 1 (M,N) (M) 

and a special solution of the inhomogeneous equation. The structure of the 
homogeneous equation is the same for all 34. Its solutions are such without a 
source Tuv and must to be set zero for physical reasons. A special solution of 
equation (5.4) is given by 

(ret) [ 
= y 1 / - 2 ~ o  z T u" + ~ (Q)Ouu(h~x,..., 

(M) [ N=O(M-1,N) N=O (M,N) (1) 

• (ret) [ [ (ret) (in) N~ ] 
hKx~i~'~N)] + ~ Jl ~ (L)ouv[hKx('fl-1),~&X }| (5.6a) 

(M-l) J l=2 [ N = l  (M,N)\(M) / J  

(ret) (ret) (ret) 
Here J1 [ " ' " ] means the retarded integral J =  V1-1 of the quantity in the 

square brackets and 

(ret) (ret) (ret) 
1 j KX huu(J z-1) = "~uv( Jt-1) -~u,~:x(  l-1)r/ (5.6b) 

(M) (M) (M) 
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The solution (5.6) supposes the existence of the several retarded integrals and 
the convergence of the series. Then, in fact, it follows that 

(M) N=O(M-1,N) N=O (M,N) 
[ (ret) (in) . \ 

I = I N = I  (M,N) 

=-2 o 2 r.v + 2 (o%.(... 
N=0 (M-1,N) N=0 (M,N) 

, , ,  / 2 (ret) (in) N \ 
+ s':2 '~'o,./2 h~x(Yt),~x } 

(M,N) \ l  = 1 (M) ] 

(M) 

The solution (5.6) shows the structure 

(N) 

(M) N =0 (M) 

(N) , (in)N(0) 
of the ~uv- That means that ffu~ is of o r a e r ,  Wu~. It holds 

(m) (M) (M) 

(5.7) 

(0) (ret) 
~.v = J~ [-2~o T.v + (Q)O.Ah~x,...,h~x)] 

(M) (M-I, O) (M,O) (1) (M-I) 

(1) (ret) , (in) ,~ 
~ g p = . f l  [--2NO T~v +(Q)0#u(hKx . . . . .  /'/~:x,"/g~.)l 

(it4) (34-1, t) (iV/', 1) (1) (M-l) 

(ret) (0) (in) 
+ J: [(L)o~(hKx,~X)] 

(M, 1)(M) 

(5.8a) 

(5 .Sb) 

(2) (ret) ( n L  
~uv= ~l  [ -2Ko Tuv + (O)ouu(hKx,. . .,hKx]'/~x)] 

(M) (M-l, 2) (M, 2) (1) (M-l) 

(ret) (L) !~) (in)2 t-J'~" (1)h (ret) .(in~. 
+ $ 2 [  0u~( Kx, V~x) + 0u~( ~a(J,),V~x)] 

(M, 2) (M) (iv/, 1) (M) 

(ret) ~L" (1) (ret) (in) . .  
+ J 3 [  t )0 (h~(J2) ,TKxll  

(M, 1) (11//) 

(S.Sc) 
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and in general 

(N) (ret) . (in) N.~  
6u,  = J l  [-2Ko Tuv + (Q)o~v(hKx . . . . .  n~x,3'~x )l 

(M) (M-1,~,9 (M,N) (1) (M-~) 

(ret) (L" (0) (in) N- (r)o,,v~. (1) ( r e t ) ( i n )  N .  
+ J2  [~ ~O,~(hKx, %x ) + (n~,(o%), ~&2)  

(M, N) (.IT/) (M,N-1) (M) 

L) (N-l) (ret) (in) 
+ . . .  ( 0uv(hKx(J1),y~x)] (5.8d) 

(M, 1) (M) 

+(ret)r(L)oJ v (1) (ret) ( in )N 1 . . .  (N-l) (ret)(in) 
3 [ ~ (hKk ( J ' 2 ) ,  "{KX - ) + " "" + (L)o#u(hg~x(~f2), ")'KX)] 

(M,N-1) (M) (M, I) (M) 

(ret) (L" (N-l) (ret) (in) 
+ i N +  ~ P 'O,~(h~.(YN), V~x)] 

(M, 1) (M) 

6. Successive Procedure to Solve the FieM Equations and the 
Equation of  Motion 

The equation of motion is used in form of the conservation law (3.6). In 
(in) 

space-time regions with Tar = 0 this conservation law takes the form 

~ (~o~¢~xr.x - ~ / }  = o (6.1) 

Because ?~v is nonlinear in the field just as Our one has 

~ . (in) N-~ -- ~ (L)~#v (in) N'x 
= . • (h~x, 3'~x ) 

M = I , N = 0  (2"v/,N)(1) (M-l) M = I , N  =1 (M,N)(M) 

(6 .2 )  

Using the series expansion (4 .15 )  and  (4 .16)  o f  fqu~ the equation of  motion 
(6.1) in the Mth order then takes the form 

N=O(M-1,N)  N a +N~ =N (O,N~) (M-1,N2) 
N~ <~ N-1 

N=0 

+ E E ~vx r .x)  
z'vI, +M 2 =M-1 N, +N 2 = N  (M,,N~) (iV&, z\q) 

M~ < M-2 

( o ) T / ( . . . )  _ ~ ( ~ ) r / ( . . . ) ?  = o, M > t 
(M, N) N = 1 (M,N) 

(6.3) 
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Knowing the orders hKx . . . .  , hKX and the matter tensor up to the (M-2)th 
(1) (M-l) 

order one can calculate the Mth order h~, and the (M-1)th order of  the matter 
(M) 

tensor from the solution (5.8) of the field equations and the equation of  motion 
(6.3). 

To do this, start from equation (6.3) for N = 0 

+ E 
(.Mr-l, O) M1 +M2 =M-1 (M~, O)(M2,O ) 

M~ ,< M-2 

-(Q)?uV(hKx . . . . .  h,~)} = 0 (6.4) 
(M, 0) (1) (M-l) 

(0) 
By solving equation (6.4) one obtains Tuv and by that the field huv from 

(M-I, 0) (M) 
equation (5.8a). For N = 1 equation (6.3) takes the form 

(M-l, 1) (0, 1) (fv/-1, 0) M,+~f~ =~4-1 Ni+N 2 =1 (M1,N ~) (2VI2,~ ~) 
M~ < Iv/-2 

(6.5) 
,. ( in) .  (o) (in) 

-(e)77(h x, • . . ,  "r x) 7 x)} -- 0 
(M, 1) (1) (M-I) (M, 1)(M) 

(0  
By solving equation (6.5) one obtains Tuv and by that the field huv from 

(o) (1.) (M-I, 1) (M) 
equation (5.8b). Using h~v and hgv one gets Tvv f romequat ion (6.3) f o r N  = 2, 

(M) (M) (M-l, 2) 
etc. The essential point of  this successive procedure is the smallness of  the 
curved background field so that it is possible to expand each order huv in powers 
of  the background. (M) 
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